Lipodystrophy papers of the month



JANUARY 2025

The anti-senescence effect of D-β-hydroxybutyrate in Hutchinson-Gilford progeria syndrome involves progerin clearance by the activation of the AMPK-mTOR-autophagy pathway
Monterrubio-Ledezma et al.
Geroscience
DOI: 10.1007/s11357-024-01501-9
https://pubmed.ncbi.nlm.nih.gov/39821043/


Apolipoprotein CIII correlates with lipoproteins in the fed state and is not regulated by leptin administration in states of hypoleptinemia induced by acute or chronic energy deficiency: Results from two randomised controlled trials
Ramirez-Cisneros et al.
Diabetes Obes Metab
DOI: 10.1111/dom.16194
https://pubmed.ncbi.nlm.nih.gov/39810632/

Perilipin-1 autoantibodies are a robust marker of acquired lipodystrophy and may precede clinical detection
Triaille et al.
Pediatr Allergy Immunol
DOI: 10.1111/pai.70026
https://pubmed.ncbi.nlm.nih.gov/39785092/

N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis
O Ribeiro et al.
Cell Commun Signal
DOI: 10.1186/s12964-024-02007-9

https://pubmed.ncbi.nlm.nih.gov/39773523/


DECEMBER 2024

Angiopoietin-2: a therapeutic target for vascular protection in Hutchinson-Gilford progeria syndrome
Vakili and Cao
Int J Mol Sci
DOI: 10.3390/ijms252413537

https://pubmed.ncbi.nlm.nih.gov/39769300/

Imaging-based molecular interaction between Src and Lamin A/C mechanosensitive proteins in the nucleus of laminopathic cells
Petrini et al.
Int J Mol Sci
DOI: 10.3390/ijms252413365

https://pubmed.ncbi.nlm.nih.gov/39769130/

The causal role of ectopic fat deposition in the pathogenesis of metabolic syndrome

Janssen
Int J Mol Sci
DOI: 10.3390/ijms252413238
https://pubmed.ncbi.nlm.nih.gov/39769002/

Vascular dysfunction in Hutchinson-Gilford progeria syndrome
Zhao et al.
Trends Mol Med
DOI: 10.1016/j.molmed.2024.12.008
https://pubmed.ncbi.nlm.nih.gov/39741011/

Loss of Mfn1 but not Mfn2 enhances adipogenesis
Mann et al.
PLOS One
DOI : 10.1371/journal.pone.0306243
https://pubmed.ncbi.nlm.nih.gov/39739772/
 
Peroxisome proliferator-activated receptor gamma mutation in familial partial lipodystrophy type three: A case report and review of literature
Wu et al.
World J Diabetes
DOI: 10.4239/wjd.v15.i12.2360
https://pubmed.ncbi.nlm.nih.gov/39676812/

Health-related quality of life, social and psychological well-being of 109 adult patients with genetic lipodystrophy
Mosbah et al.
J Clin Endocrinol Metab
DOI: 10.1210/clinem/dgae837
https://pubmed.ncbi.nlm.nih.gov/39657019/


NOVEMBER 2024

A woman with multifocal lipodystrophy in unilateral trunk and extremities
Zi et al.
Neuro Endocrinol Lett
PMID 39688657
https://pubmed.ncbi.nlm.nih.gov/39688657/
 
Roles of the lamin A-specific tail region in the localization to sites of nuclear envelope rupture
Kono et al.
PNAS Nexus
DOI: 10.1093/pnasnexus/pgae527
https://pubmed.ncbi.nlm.nih.gov/39677369/
 
Serum leucine-rich alpha-2 glycoprotein 1 levels in patients with lipodystrophy syndromes
Krienke et al.
Biomolecules
DOI: 10.3390/biom14111474
https://pubmed.ncbi.nlm.nih.gov/39595649/

Lipodystrophiesyndrome – klinische Präsentation und Management
Beghini and Sherer
Journal für Endokrinologie, Diabetologie und Stoffwechsel
DOI: 10.1007/s41969-024-00255-1
https://link.springer.com/article/10.1007/s41969-024-00255-1 (German)

Concurrent de novo pathogenic variants in the LMNA gene as a cause of sporadic partial lipodystrophy
Santos et al.
Front Genet
DOI: 10.3389/fgene.2024.1468878
https://pubmed.ncbi.nlm.nih.gov/39669119/

MAM-STAT3-driven mitochondrial Ca+2 upregulation contributes to immunosenescence in type A mandibuloacral dysplasia patients
Padhiar et al.
Adv Sci (Weinh)
DOI: 10.1002/advs.202407398
https://pubmed.ncbi.nlm.nih.gov/39661729/

Gain of function NOTCH3 variants cause familial partial lipodystrophy due to activation of senescence pathways
Garg et al.
Diabetes
DOI: 10.2337/db24-0624
https://pubmed.ncbi.nlm.nih.gov/39652711/

Treatment of facial lipodystrophy induced by a biologic agent (IPD-1): a literature review
Friedhofer et al.
Einstein (Sao Paulo)
DOI: 10.31744/einstein_journal/2024RC1111
https://pubmed.ncbi.nlm.nih.gov/39630751/
  
Seipin governs phosphatidic acid homeostasis at the inner nuclear membrane
Romanauska et al.
Nat Commun
DOI: 10.1038/s41467-024-54811-z
https://pubmed.ncbi.nlm.nih.gov/39622802/

Phosphorylation of Lamin A/C regulates the structural integrity of the nuclear envelope
Liu et al.
J Biol Chem
DOI: 10.1016/j.jbc.2024.108033
https://pubmed.ncbi.nlm.nih.gov/39615679/
 
When do the pathological signs become evident? Study of human mesenchymal stem cells in MDPL syndrome
Paola et al.
Aging (Albany NY)
DOI: 10.18632/aging.206159
https://pubmed.ncbi.nlm.nih.gov/39611849/
 
Plasma membrane remodeling determines adipocyte expansion and mechanical adaptability
Aboy-Pardal et al.
Nat Commun
DOI: 10.1038/s41467-024-54224-y
https://pubmed.ncbi.nlm.nih.gov/39609408/ 
 
Genomic and bioinformatics analysis of familial partial lipodystrophy type 3 identified in a patient with novel PPARγ mutation and robust response to pioglitazone
Hummadi et al.
Int J Mol Sci
DOI: 10.3390/ijms252212060
https://pubmed.ncbi.nlm.nih.gov/39596129/

Normal bone matrix mineralization but altered growth plate morphology in the LmnaG609G/G609G mouse model of progeria
Blouin et al.
Aging Dis
DOI: 10.14336/AD.2024.1094
https://pubmed.ncbi.nlm.nih.gov/39571160/  

Characterization of the craniofacial abnormalities of the homozygous G608G progeria mouse model
Beeram et al.
Front Physiol
DOI: 10.3389/fphys.2024.1481985
https://pubmed.ncbi.nlm.nih.gov/39568542/

Disorganized chromatin hierarchy and stem cell aging in a male patient of atypical laminopathy-based progeria mandibuloacral dysplasia type A
Jin et al.
Nat Commun
DOI: 10.1038/s41467-024-54338-3
https://pubmed.ncbi.nlm.nih.gov/39567511/
 
Orbital inflammatory disease as a presenting symptom of generalized lipodystrophy in a young female
Shabto et al.
Ophthalmic Plast Reconstr Surg
DOI: 10.1097/IOP.0000000000002823
https://pubmed.ncbi.nlm.nih.gov/39560295/
 
Rare variation in LMNA underlies polycystic ovary syndrome (PCOS) pathogenesis in two independent cohorts
Bauer et al.
J Clin Endocrinol Metab
DOI: 10.1210/clinem/dgae761
https://pubmed.ncbi.nlm.nih.gov/39484826/

A case of bone marrow transplant-associated partial lipodystrophy
Khan et al.
Cureus
DOI: 10.7759/cureus.71641
https://pubmed.ncbi.nlm.nih.gov/39553096/



OCTOBER 2024

Evidence from clinical studies of leptin: current and future clinical applications in humans
Perakakis and Mantzoros
Metabolism
DOI: 10.1016/j.metabol.2024.156053
https://pubmed.ncbi.nlm.nih.gov/39490439/

Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health
Stefanakis et al.
Metabolism
DOI: 10.1016/j.metabol.2024.156056
https://pubmed.ncbi.nlm.nih.gov/39481533/

Endothelial cell-specific progerin expression does not cause cardiovascular alterations and premature death
Benedicto et al.
Aging Cell
DOI: 10.1111/acel.14389
https://pubmed.ncbi.nlm.nih.gov/39479939/

Acquired partial lipodystrophy: clinical management in a pregnant patient
Romanisio et al.
J Endocr Soc
DOI: 10.1210/jendso/bvae181
https://pubmed.ncbi.nlm.nih.gov/39479521/
 
Identification and characterization of a case of mild familial partial lipodystrophy in a carrier of a LMNA p.Arg582Leu variant
Barile et al.
Acta Diabetol
DOI: 10.1007/s00592-024-02396-w
https://pubmed.ncbi.nlm.nih.gov/39470804/

 
SEPTEMBER 2024

Tirzepatide for Lipodystrophy
Meral et al.
DOI: 10.1101/2024.09.25.24313345
PREPRINT

https://pubmed.ncbi.nlm.nih.gov/39802778/


Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities
Harake et al.
Adipocyte
DOI: 10.1080/21623945.2024.2403380
https://pubmed.ncbi.nlm.nih.gov/39329369/

Commentary: A rapid action plan to improve diagnosis and management of lipodystrophy syndromes
Massey et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1445226
https://pubmed.ncbi.nlm.nih.gov/39319257/

Lamin chromatin binding is modulated by interactions of different LAP2α domains with lamins and chromatin
Filipczak et al.
iScience
DOI: 10.1016/j.isci.2024.110869
https://pubmed.ncbi.nlm.nih.gov/39319273/

Precision medicine: toward restoring fat with gene therapy in inherited lipodystrophy
Prieur and Cao
Gene Ther
DOI: 10.1038/s41434-024-00489-3
https://pubmed.ncbi.nlm.nih.gov/39317737/

Partial lipodystrophy affecting the extremities in a young woman with autoimmune polyglandular syndrome 1
Agarwal et al.
JCEM Case Rep
DOI: 10.1210/jcemcr/luae166
https://pubmed.ncbi.nlm.nih.gov/39318439/

A case of restrictive dermopathy in a Hutterite newborn: Diagnosis and creative skin-directed management
Grist et al.
Pediatr Dermatol
DOI: 10.1111/pde.15681
https://pubmed.ncbi.nlm.nih.gov/38965877/

Lipodystrophia centrifugalis abdominals infantilis presenting as a giant ulceration and treatment with hydroxychloroquine and baricitinib

Zhao et al.
Indian J Dermatol Venereol Leprol
DOI: 10.25259/IJDVL_643_2023
https://pubmed.ncbi.nlm.nih.gov/38594998/


AUGUST 2024

Lipodystrophic laminopathies: from Dunnigan disease to progeroid syndromes
Díaz-López et al.
International Journal of Molecular Sciences
DOI: 10.3390/ijms25179324
https://pubmed.ncbi.nlm.nih.gov/39273270/

A cohort analysis of familial partial lipodystrophy from two Mediterranean countries
Fernández-Pombo et al.
Diabetes Obes Metab
DOI: 10.1111/dom.15882
https://pubmed.ncbi.nlm.nih.gov/39171574/

Loss of HD-PTP function results in lipodystrophy, defective cellular signaling, and altered lipid homeostasis
Schultz et al.
J Cell Sci
DOI: 10.1242/jcs.262032
https://pubmed.ncbi.nlm.nih.gov/39155850/

Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner
Steiner et al.
Nat Commun
DOI: 10.1038/s41467-024-50985-8
https://pubmed.ncbi.nlm.nih.gov/39103342/


JULY 2024

Case report: First Chinese patient with family partial lipodystrophy type 6 due to novel compound heterozygous mutations in the LIPE gene
Zhou et al.
Front Genet
DOI: 10.3389/fgene.2024.1417613
https://pubmed.ncbi.nlm.nih.gov/39113684/

Preclinical evaluation of tissue-selective gene therapies for congenital generalised lipodystrophy
Tiwari et al.
Gene Ther
DOI: 10.1038/s41434-024-00471-z
https://pubmed.ncbi.nlm.nih.gov/39069561/

Circulating exosomal circRNA-miRNA-mRNA network in a familial partial lipodystrophy type 3 family with a novel PPARG frameshift mutation c.418dup
Zhou et al.
Am J Physiol Endocrinol Metab
DOI: 10.1152/ajpendo.00094.2024

https://pubmed.ncbi.nlm.nih.gov/39017680/

Diagnosis, treatment and management of lipodystrophy: the physician perspective on the patient journey

Patni et al.
Orphanet J Rare Dis
DOI: 10.1186/s13023-024-03245-3

https://pubmed.ncbi.nlm.nih.gov/38992753/

The lipid droplet assembly complex consists of seipin and four accessory factors in budding yeast

Wang et al.
J Biol Chem
DOI: 10.1016/j.jbc.2024.107534

https://pubmed.ncbi.nlm.nih.gov/38981533/

Prenatal diagnosis of SLC25A24 Fontaine progeroid syndrome: description of the fetal phenotype, genotype and detection of parental mosaicism

Pannier et al.
Birth Defects Res
DOI: 10.1002/bdr2.2380

https://pubmed.ncbi.nlm.nih.gov/38980211/

PAQR4 regulates adipocyte function and systemic metabolic health by mediating ceramide levels
Zhu et al.
Nat Metab
DOI: 10.1038/s42255-024-01078-9
https://pubmed.ncbi.nlm.nih.gov/38961186/

Case report: two novel PPARG pathogenic variants associated with type 3 familial partial lipodystrophy in Brazil
Alvares da Silva et al.
Diabetol Metab Syndr
DOI: 10.1186/s13098-024-01387-9
https://pubmed.ncbi.nlm.nih.gov/38951919/

Progerin forms an abnormal meshwork and has a dominant-negative effect on the nuclear lamina

Kim et al.
Proc Natl Acad Sci U S A
DOI: 10.1073/pnas.2406946121
https://pubmed.ncbi.nlm.nih.gov/38917015/

Lipodystrophy prevalence, "Lipodystrophy-like phenotypes," and diagnostic challenges
Akinci et al.
Diabetes
DOI: 10.2337/dbi24-0018
https://pubmed.ncbi.nlm.nih.gov/38900954/

Relationship of fat mass ratio, a biomarker for lipodystrophy, with cardiometabolic traits

Agrawal et al.
Diabetes
DOI: 10.2337/db23-0575
https://pubmed.ncbi.nlm.nih.gov/38345889/


JUNE 2024

Identification of ibuprofen targeting CXCR family members to alleviate metabolic disturbance in lipodystrophy based on bioinformatics and in vivo experimental verification

Cao et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1414908
https://pubmed.ncbi.nlm.nih.gov/38989000/

Early B-cell transcription factor-2 defect as a novel cause of lipodystrophy: disruption of the adipose tissue character and integrity

Foss-Freitas et al.
DOI: 10.1101/2024.06.24.24309093
PREPRINT medRxiv
https://pubmed.ncbi.nlm.nih.gov/38978649/

A rapid action plan to improve diagnosis and management of lipodystrophy syndromes
Front Endocrinol (Lausanne)
Fourman et al.
DOI: 10.3389/fendo.2024.1383318
https://pubmed.ncbi.nlm.nih.gov/38952397/

Hypertriglyceridemia results from an impaired catabolism of triglyceride-rich lipoproteins in PLIN1-related lipodystrophy
Vergès et al.
Arterioscler Thromb Vasc Biol
DOI: 10.1161/ATVBAHA.124.320774
https://pubmed.ncbi.nlm.nih.gov/38899472/

Comprehensive analysis of morbidity and mortality patterns in familial partial lipodystrophy patients: insights from a population study
Guidorizzi et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1359211
https://pubmed.ncbi.nlm.nih.gov/38887266/

An unusual case of acquired generalized lipodystrophy (panniculitis variety)

Hill et al.
Pediatr Dermatol
DOI: 10.1111/pde.15668
https://pubmed.ncbi.nlm.nih.gov/38887123/

A case of mother and child with CANDLE syndrome: Diagnosis and subsequent treatment with baricitinib

Guo et al.
Pediatr Dermatol
DOI: 10.1111/pde.15667
https://pubmed.ncbi.nlm.nih.gov/38881047/

Nuclear lipid droplet: Guardian of nuclear membrane lipid homeostasis?
Fujimoto
Curr Opin Cell Biol
DOI: 10.1016/j.ceb.2024.102370
https://pubmed.ncbi.nlm.nih.gov/38744005/
 
Lipomatoses
Dupuis et al.
Ann Endocrinol (Paris)
DOI: 10.1016/j.ando.2024.05.003
https://pubmed.ncbi.nlm.nih.gov/38871514/
 
Immune checkpoint inhibitors-associated generalized lipodystrophy: reconstructive challenges of an emerging and distinct form of lipodystrophy
Kreutz-Rodrigues et al.
J Craniofac Surg
DOI: 10.1097/SCS.0000000000010409
https://pubmed.ncbi.nlm.nih.gov/38869298/

Hepatic steatosis and its associations with acute and chronic liver diseases
Koenig et al.
Aliment Pharmacol Ther
DOI: 10.1111/apt.18059
https://pubmed.ncbi.nlm.nih.gov/38845486/

 

Seipin is involved in oxygen-glucose deprivation/reoxygenation induced neuroinflammation by regulating the TLR3/TRAF3/NF-κB pathway
Guo et al.
International Immunopharmacology
DOI: 10.1016/j.intimp.2024.112182
https://pubmed.ncbi.nlm.nih.gov/38703568/
 
ADH1B, the adipocyte-enriched alcohol dehydrogenase, plays an essential, cell-autonomous role in human adipogenesis
Gautheron et al.
Proc Natl Acad Sci U S A
DOI: 10.1073/pnas.2319301121
https://pubmed.ncbi.nlm.nih.gov/38838011/

  

MAY 2024

Partial lipodystrophy: Clinical presentation and treatment
Mosbah et al.
Ann Endocrinol (Paris)
DOI: 10.1016/j.ando.2024.05.015
https://pubmed.ncbi.nlm.nih.gov/38871513/

Generalized lipodystrophies: Clinical characterization and physiopathology

Prieur
Ann Endocrinol (Paris)
DOI: 10.1016/j.ando.2024.05.017
https://pubmed.ncbi.nlm.nih.gov/38871503/
 
Primary disease of adipose tissue: When to think about and how to evaluate it in clinical practice?
Vatier et al.
Ann Endocrinol (Paris)
DOI: 10.1016/j.ando.2024.05.019
https://pubmed.ncbi.nlm.nih.gov/38871502/

Leptin replacement therapy in the management of lipodystrophy syndromes
Vigouroux et al.
Ann Endocrinol (Paris)
DOI: 10.1016/j.ando.2024.05.022
https://pubmed.ncbi.nlm.nih.gov/38871500/

PPA1 promotes adipogenesis by regulating the stability of C/EBPs
Wu et al.
Cell Death & Differentiation
DOI: 10.1038/s41418-024-01309-2
https://www.nature.com/articles/s41418-024-01309-2

Seipin deficiency-induced lipid dysregulation leads to hypomyelination-associated cognitive deficits via compromising oligodendrocyte precursor cell differentiation
Cui et al.
Cell Death & Differentiation
DOI: 10.1038/s41419-024-06737-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109229/

OTULIN deficiency: focus on innate immune system impairment
Dou et al.
Front Immunol
DOI: 10.3389/fimmu.2024.1371564
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106414/

A unifying mechanism for seipin-mediated lipid droplet formation
Klug et al.
FEBS Lett
DOI: 10.1002/1873-3468.14825
https://febs.onlinelibrary.wiley.com/doi/10.1002/1873-3468.14825

Podocytopathies associated with familial partial lipodystrophy due to LMNA variants: report of two cases
Morguetti et al.
Arch Endocrinol Metab
DOI: 10.20945/2359-4292-2023-0204
https://pubmed.ncbi.nlm.nih.gov/38739524/

Nuclear lipid droplet: Guardian of nuclear membrane lipid homeostasis?
Fujimoto
Curr Opin Cell Biol
DOI: 10.1016/j.ceb.2024.102370
https://pubmed.ncbi.nlm.nih.gov/38744005/

Dysfunctional adipocytes promote tumor progression through YAP/TAZ-dependent cancer-associated adipocyte transformation
Song et al.
Nat Commun
DOI: 10.1038/s41467-024-48179-3
https://pubmed.ncbi.nlm.nih.gov/38744820/

Effects of metreleptin in patients with generalized lipodystrophy before vs after the onset of severe metabolic disease
Brush et al.
J Clin Endocrinol Metab
DOI: 10.1210/clinem/dgae335
https://pubmed.ncbi.nlm.nih.gov/38757950/

Impaired signaling pathways on Berardinelli-Seip congenital lipodystrophy macrophages during Leishmania infantum infection
Nogueira et al.
Sci Rep
DOI: 10.1038/s41598-024-61663-6
https://pubmed.ncbi.nlm.nih.gov/38755198/


APRIL 2024 

GLP-1 receptor agonist improves metabolic disease in a pre-clinical model of lipodystrophy
Roumane et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1379228
https://pubmed.ncbi.nlm.nih.gov/38745956/

A novel subtype of acquired generalized lipodystrophy associated with subcutaneous panniculitis-like T-cell lymphoma
Hoff et al.
JCEM Case Rep
DOI: 10.1210/jcemcr/luae069
https://pubmed.ncbi.nlm.nih.gov/38681964/

Diagnostic and referral pathways in patients with rare lipodystrophy and insulin-resistance syndromes: key milestones assessed from a national reference center
Donadille et al.
Orphanet J Rare Dis
DOI: 10.1186/s13023-024-03173-2
https://pubmed.ncbi.nlm.nih.gov/38678257/

Heterogeneity and high prevalence of bone manifestations, and bone mineral density in congenital generalized lipodystrophy subtypes 1 and 2
Freire et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1326700
https://pubmed.ncbi.nlm.nih.gov/38633760/

Gestational and neonatal outcomes of women with partial Dunnigan lipodystrophy
Valerio et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1359025
https://pubmed.ncbi.nlm.nih.gov/38633761/

Ip3r-Grp75-Vdac and relevant Ca2+ signaling regulate dietary palmitic acid-induced de novo lipogenesis by mitochondria-associated ER membrane (MAM) recruiting Seipin in yellow catfish
Song et al.
J Nutr
DOI: 10.1016/j.tjnut.2024.04.021
https://pubmed.ncbi.nlm.nih.gov/38641205/

Mesenchymal-specific Alms1 knockout in mice recapitulates metabolic features of Alström syndrome
McKay et al.
Mol Metab
DOI: 10.1016/j.molmet.2024.101933
https://pubmed.ncbi.nlm.nih.gov/38583571/
 
Loss-of-function variants affecting the STAGA complex component SUPT7L cause a developmental disorder with generalized lipodystrophy
Kopp et al.
Hum Genet
DOI: 10.1007/s00439-024-02669-y
https://pubmed.ncbi.nlm.nih.gov/38592547/

SIRT1 serum concentrations in lipodystrophic syndromes
Salvatori et al.
International Journal of Molecular Sciences
DOI: 10.3390/ijms25094785
https://pubmed.ncbi.nlm.nih.gov/38732001/


MARCH 2024

Regulated regeneration of adipose tissue in lipodystrophic Agpat2-null mice partially ameliorates hepatic steatosis
Agarwal et al.
iScience
DOI: 10.1016/j.isci.2024.109517
https://pubmed.ncbi.nlm.nih.gov/38623324/

Further delineation of Wiedemann‐Rautenstrauch syndrome linked with POLR3A

Khan et al.
Mol Genet Genomic Med
DOI: 10.1002/mgg3.2274
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958179/

Adipose transplantation improves metabolism and atherosclerosis but not PVAT abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe null mice
Meng et al.
Am J Physiol Cell Physiol
DOI: 10.1152/ajpcell.00698.2023
https://pubmed.ncbi.nlm.nih.gov/38525541/

Case report: A novel splice-site mutation of MTX2 gene caused mandibuloacral dysplasia progeroid syndrome: the first report from China and literature review
Fu et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2024.1345067
https://pubmed.ncbi.nlm.nih.gov/38544690/
 
Clinicopathological characteristics, treatment and follow-up of lipodystrophia centrifugalis abdominalis infantilis: A retrospective case series in China
Zhao et al.
Australas J Dermatol
DOI: 10.1111/ajd.14203
https://pubmed.ncbi.nlm.nih.gov/38095123/

Mitophagy defect mediates the aging-associated hallmarks in Hutchinson-Gilford progeria syndrome
Sun et al.
Aging Cell
DOI: 10.1111/acel.14143
https://pubmed.ncbi.nlm.nih.gov/38482753/

Rare monogenic causes of steatotic liver disease masquerading as MASLD
Brouwers and Cassiman
J Hepatol
DOI: 10.1016/j.jhep.2024.02.025
https://pubmed.ncbi.nlm.nih.gov/38458321/

Analysis of disease characteristics of a large patient cohort with congenital generalized lipodystrophy from the Middle East and North Africa
Yaarubi et al.
Orphanet J Rare Dis
DOI: 10.1186/s13023-024-03084-2
https://pubmed.ncbi.nlm.nih.gov/38481246/


FEBRUARY 2024

The genetic basis of the first patient with Wiedemann-Rautenstrauch syndrome in the Russian Federation

Kovalskaia et al.
Genes (Basel)
DOI: 10.3390/genes15020180

https://pubmed.ncbi.nlm.nih.gov/38397171/
 
SARS-CoV-2 infection alters the phenotype and gene expression of adipocytes
Quaranta et al.
Int J Mol Sci
DOI: 10.3390/ijms25042086

https://pubmed.ncbi.nlm.nih.gov/38396763/

Defining the progeria phenome
Worm et al.
Aging (Albany NY)
DOI: 10.18632/aging.205537
https://pubmed.ncbi.nlm.nih.gov/38345566/

Serum levels of adiponectin differentiate generalized lipodystrophies from anorexia nervosa
Ceccarini et al.
J Endocrinol Invest
DOI: 10.1007/s40618-024-02308-3
https://pubmed.ncbi.nlm.nih.gov/38358463/

The efficacy and safety of glucagon-like peptide-1 agonists in a retrospective study of patients with familial partial lipodystrophy
Foss-Freitas et al.
Diabetes Care
DOI: 10.2337/dc23-1614
https://pubmed.ncbi.nlm.nih.gov/38300898/


JANUARY 2024

Effect of β-estradiol on adipogenesis in a 3T3-L1 Cell model of prelamin A accumulation
Cobelo-Gómez et al.
Int. J. Mol. Sci.
DOI: 10.3390/ijms25021282
https://pubmed.ncbi.nlm.nih.gov/38279282/

Metabolic and other morbid complications in congenital generalized lipodystrophy type 4
Akinci et al.
Am. J. Med. Genet. A.
DOI: 10.1002/ajmg.a.63533
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043304/

Familial screening for the prevention of rare diseases: A focus on lipodystrophy in Southern Saudi Arabia
Abuzenadah et al.
J. Epidemiol Glob. Health
DOI: 10.1007/s44197-023-00182-5
https://pubmed.ncbi.nlm.nih.gov/38234231/

Perilipin 1: a systematic review on its functions on lipid metabolism and atherosclerosis in mice and humans
Desgrouas et al.
Cardiovasc. Res.
DOI: 10.1093/cvr/cvae005
https://pubmed.ncbi.nlm.nih.gov/38214891/

Epidemiological characteristics of patients with Hutchinson-Gilford progeria syndrome and progeroid laminopathies in China
Wang et al.
Pediatr. Res.
DOI: 10.1038/s41390-023-02981-9
https://pubmed.ncbi.nlm.nih.gov/38191824/

Phospholipid biosynthetic pathways and lipodystrophies: a novel syndrome due to PLAAT3 deficiency
Agarwal and Garg
Nat. Rev. Endocrinol.
DOI:
10.1038/s41574-023-00950-0
https://pubmed.ncbi.nlm.nih.gov/38191657/

Impact of lipodystrophy on health-related quality of life: the QuaLip study
Demir et al.
Orphanet J. Rare Dis.
DOI: 10.1186/s13023-023-03004-w
https://pubmed.ncbi.nlm.nih.gov/38183080/

Molecular characterization of the grass carp Bscl2 gene and its expression response to lipid accumulation, nutritional status, insulin and glucagon
Yang et al.
Comp. Biochem. Physiol. B. Biochem. Mol. Biol.
DOI: 10.1016/j.cbpb.2023.110931
https://pubmed.ncbi.nlm.nih.gov/38070669/

Surplus fatty acid synthesis increases oxidative stress in adipocytes and lnduces lipodystrophy

Weng et al.
Nat. Commun.
DOI: 10.1038/s41467-023-44393-7
https://pubmed.ncbi.nlm.nih.gov/38168040/


DECEMBER 2023

Influence of diet and body weight in treatment-resistant acquired partial lipodystrophy after hematopoietic stem cell transplantation and its potential for metabolic improvement
Ishida et al.
Diabetol Int
DOI: 10.1007/s13340-023-00674-6
https://pubmed.ncbi.nlm.nih.gov/38524924/

Liver transplantation in patient with Berardinelli-Seip syndrome: A literature review and case report
Aliyev et al.
Pediatric Transplantation
DOI: 10.1111/petr.14680
https://pubmed.ncbi.nlm.nih.gov/38149359/

Molecular mechanisms of perilipin protein function in lipid droplet metabolism
Griseti et al.
FEBS Lett.
DOI: 10.1002/1873-3468.14792
https://pubmed.ncbi.nlm.nih.gov/38140813/

DNA repair-deficient premature aging models display accelerated epigenetic age
Perez et al.
Aging Cell
DOI: 10.1111/acel.14058
https://pubmed.ncbi.nlm.nih.gov/38140713/

Patients' perspective on the medical pathway from first symptoms to diagnosis in genetic lipodystrophy
Mosbah et al.
Eur J Endocrinol.
DOI: 10.1093/ejendo/lvad169
https://pubmed.ncbi.nlm.nih.gov/38128113/

Clinical characteristics of patients with acquired partial lipodystrophy: a multicenter retrospective study
Magno et al.
J Clin Endocrinol Metab.
DOI: 10.1210/clinem/dgad700
https://pubmed.ncbi.nlm.nih.gov/38061004/

The farnesyl transferase inhibitor (FTI) lonafarnib improves nuclear morphology in ZMPSTE24-deficient fibroblasts from patients with the progeroid disorder MAD-B
Odinammadu et al.
Nucleus
DOI: 10.1080/19491034.2023.2288476
https://pubmed.ncbi.nlm.nih.gov/38050983/



NOVEMBER 2023

Preclinical, randomized phase 1, and compassionate use evaluation of REGN4461, a leptin receptor agonist antibody for leptin deficiency
Altarejos et al.
Sci Transl Med.
DOI: 10.1126/scitranslmed.add4897

https://pubmed.ncbi.nlm.nih.gov/37992152/

Clinical characterisation and comorbidities of acquired generalised lipodystrophy: A 14-year follow-up study
Fernández-Pombo et al.
J Clin Med.
DOI: 10.3390/jcm12237344
https://pubmed.ncbi.nlm.nih.gov/38068396/

Mineralcorticoid receptor antagonism prevents type 2 familial partial lipodystrophy brown adipocyte dysfunction
Schena et al.
Cells
DOI: 10.3390/cells12222586.
https://pubmed.ncbi.nlm.nih.gov/37998321/
 
Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARγ signaling
Schuermans et al.
Nat. Genet.

DOI: 10.1038/s41588-023-01535-3.

https://pubmed.ncbi.nlm.nih.gov/37919452/
 
Natural history and comorbidities of generalised and partial lipodystrophy syndromes in Spain
Fernández-Pombo et al.
Front Endocrinol (Lausanne)
DOI: 10.3389/fendo.2023.1250203.
https://pubmed.ncbi.nlm.nih.gov/38034001/